Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Hortic Res ; 10(11): uhad204, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38023479

RESUMO

Alterations in plant metabolism play a key role in the complex plant-pathogen interactions. However, there is still a lack of knowledge about the connection between changes in primary and specialized metabolism and the plant defense against diseases that impact crops. Thus, we aim to study the metabolic reprograming in Brassica oleracea plants upon infection by Xanthomonas campestris pv. campestris (Xcc). To accomplish this, we utilized a combination of untargeted and targeted metabolomics, through UPLC-Q-TOF-MS/MS and 1H-NMR, in two crop lines differing in resistance that were evaluated at two- and four-week intervals following inoculation (T1 and T2, respectively). Besides, to depict the physiological status of the plant during infection, enzymatic activities related to the carbohydrate pathway and oxidative stress were studied. Our results revealed different temporal dynamics in the responses of the susceptible vs. resistant crops lines. Resistant B. oleracea line suppresses carbohydrate metabolism contributing to limit nutrient supplies to the bacterium and prioritizes the induction of defensive compounds such as indolic glucosinolates, salicylic acid, phenylpropanoids and phytoalexins precursors at early infection stages. In contrast, the susceptible line invests in carbohydrate metabolism, including enzymatic activities related to the hexoses turnover, and activates defense signaling related to reactive oxygen species. Thus, each line triggers a different metabolic strategy that will affect how the plant overcomes the disease in terms of resistance and growth. This work provides first insights of a fine-tuned metabolic regulation during Xcc infection in B. oleracea that will contribute to develop new strategies for plant disease management.

2.
Plant Sci ; 330: 111664, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36858205

RESUMO

Trichoderma is a genus of filamentous fungi widely studied and used as a biological control agent in agriculture. However, its ability to form fungal networks for inter-plant communication by means of the so-called inter-plant "wired communication" has not yet been addressed. In our study we used the model plant Arabidopsis thaliana, the fungus Trichoderma hamatum (isolated from Brassicaceae plants) and the pathogens Sclerotinia sclerotiorum and Xanthomonas campestris (necrotrophic fungus and hemibiotrophic bacteria, respectively). We performed different combinations of isolated/neighboring plants and root colonization/non-colonization by T. hamatum, as well as foliar infections with the pathogens. In this way, we were able to determine how, in the absence of T. hamatum, there is an inter-plant communication that induces systemic resistance in neighboring plants of plants infected by the pathogens. On the other hand, the plants colonized by T. hamatum roots show a greater systemic resistance against the pathogens. Regarding the role of T. hamatum as an inter-plant communicator, it is the result of an increase in foliar signaling by jasmonic acid (increased expression of LOX1 and VSP2 genes and decreased expression of ICS1 and PR-1 genes), antagonistically increasing root signaling by salicylic acid (increased expression of ICS1 and PR-1 genes and decreased expression of LOX1 and VSP2). This situation prevents root colonization by T. hamatum of the foliarly infected plant and leads to massive colonization of the neighboring plant, where jasmonic acid-mediated systemic defenses are induced.


Assuntos
Arabidopsis , Trichoderma , Trichoderma/genética , Trichoderma/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Arabidopsis/genética , Doenças das Plantas/microbiologia , Ácido Salicílico/metabolismo
3.
Pest Manag Sci ; 79(2): 803-810, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36259248

RESUMO

BACKGROUND: Plants defend themselves from insect feeding by activating specific metabolic pathways. We performed a metabolomic analysis to compare the metabolome reorganization that occurs in the leaves of two genotypes of cabbage (one partially resistant and one susceptible) when attacked by Mamestra brassicae caterpillars. RESULTS: The comparison of the metabolomic reorganization of both genotypes allowed us to identify 43 metabolites that are specifically associated with the insect feeding response in the resistant genotype. Of these, 19% are lipids or lipid-related compounds, most of which are modified fatty acids. These include glycosylated, glycerol-binding and oxidized fatty acids, the majority being associated with the oxylipin pathway. Some of the identified lipids are unlikely to be produced by plants and may be the result of biochemical reactions in the caterpillar oral secretions. A further 16% are phenylpropanoids. Interestingly, some phenylpropanoids were not present in the susceptible genotype, making them possible candidates for specific resistance-related compounds. CONCLUSION: Our results suggest that glucosinolates do not have a clear role in the resistance to M. brassicae feeding on cabbage. Using an untargeted metabolomics approach, we associated the regulation of metabolic pathways related to lipid signalling and phenylpropanoid compounds with the resistance to this pest. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Brassica , Lepidópteros , Mariposas , Animais , Brassica/genética , Mariposas/fisiologia , Transdução de Sinais/genética , Ácidos Graxos , Lipídeos
4.
Plant J ; 106(2): 454-467, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33523525

RESUMO

Plant metabolism is modulated by a complex interplay between internal signals and external cues. A major goal of all quantitative metabolomic studies is to clone the underlying genes to understand the mechanistic basis of this variation. Using fine-scale genetic mapping, in this work we report the identification and initial characterization of NAD-DEPENDENT MALIC ENZYME 1 (NAD-ME1) as the candidate gene underlying the pleiotropic network Met.II.15 quantitative trait locus controlling variation in plant metabolism and circadian clock outputs in the Bay × Sha Arabidopsis population. Transcript abundance and promoter analysis in NAD-ME1Bay-0 and NAD-ME1Sha alleles confirmed allele-specific expression that appears to be due a polymorphism disrupting a putative circadian cis-element binding site. Analysis of transfer DNA insertion lines and heterogeneous inbred families showed that transcript variation of the NAD-ME1 gene led to temporal shifts of tricarboxylic acid cycle intermediates, glucosinolate (GSL) accumulation, and altered regulation of several GSL biosynthesis pathway genes. Untargeted metabolomic analyses revealed complex regulatory networks of NAD-ME1 dependent upon the daytime. The mutant led to shifts in plant primary metabolites, cell wall components, isoprenoids, fatty acids, and plant immunity phytochemicals, among others. Our findings suggest that NAD-ME1 may act as a key gene to coordinate plant primary and secondary metabolism in a time-dependent manner.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Genes de Plantas/genética , Alelos , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mapeamento Cromossômico , Regulação da Expressão Gênica de Plantas/genética , Redes Reguladoras de Genes/genética , Redes e Vias Metabólicas , Locos de Características Quantitativas/genética
5.
Foods ; 9(11)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182814

RESUMO

Moringa oleifera L. is greatly appreciated for its high content of phytochemicals. Although most parts of moringa tree have been widely studied, seeds remained scarcely explored. The first goal of this study was to investigate the effectiveness of germination to improve the nutritional composition (proximate composition and levels of vitamins B1 and B2), content of bioactive compounds (glucosinolates, phenolics and γ-aminobutyric acid, GABA) and antioxidant activity of moringa seed. Germination improved protein, fat, fiber, riboflavin, phenolics, some individual glucosinolates (GLS) and GABA contents, as well as the antioxidant potential in moringa sprouts, but the extent of the improvement depended on germination conditions. The second objective of this work was to identify the optimal germination conditions to maximize nutritional and bioactive quality of moringa by applying multi-response optimization (response surface methodology, RSM). RSM models indicated that 28 °C and 24 h were the optimal conditions to enhance the accumulation of riboflavin, phenolics and antioxidant activity of sprouts, while the highest GABA and total GLS contents were observed at 36 °C for 96 h and thiamine achieved the maximum content at 36 °C for 24 h. These results show that moringa sprouts are promising functional foods that might be also used as ingredients for the elaboration of novel foodstuffs.

6.
Sci Rep ; 10(1): 20224, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33214647

RESUMO

Brassica oleracea var. acephala (kale) is a cruciferous vegetable widely cultivated for its leaves and flower buds in Atlantic Europe and the Mediterranean area, being a food of great interest as a "superfood" today. Little has been studied about the diversity of endophytic fungi in the Brassica genus, and there are no studies regarding kale. In this study, we made a survey of the diversity of endophytic fungi present in the roots of six different Galician kale local populations. In addition, we investigated whether the presence of endophytes in the roots was beneficial to the plants in terms of growth, cold tolerance, or resistance to bacteria and insects. The fungal isolates obtained belonged to 33 different taxa. Among those, a Fusarium sp. and Pleosporales sp. A between Setophoma and Edenia (called as Setophoma/Edenia) were present in many plants of all five local populations, being possible components of a core kale microbiome. For the first time, several interactions between endophytic fungus and Brassica plants are described and is proved how different interactions are beneficial for the plant. Fusarium sp. and Pleosporales sp. B close to Pyrenophora (called as Pyrenophora) promoted plant growth and increased cold tolerance. On the other hand, isolates of Trichoderma sp., Pleosporales sp. C close to Phialocephala (called as Phialocephala), Fusarium sp., Curvularia sp., Setophoma/Edenia and Acrocalymma sp. were able to activate plant systemic resistance against the bacterial pathogen Xanthomonas campestris. We also observed that Fusarium sp., Curvularia sp. and Setophoma/Edenia confered resistance against Mamestra brassicae larvae.


Assuntos
Brassica/microbiologia , Endófitos/isolamento & purificação , Raízes de Plantas/microbiologia , Fusarium/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA